a sample...

the Gamma function satisfying
$\Gamma(n) = (n-1)! \quad\forall
n\in\mathbb N$ is via
through the Euler integral:

$$
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.
$$

becomes...

the Gamma function satisfying
$\Gamma(n) = (n-1)! \quad\forall n\in\mathbb N$ is via
through the Euler integral: $$ \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. $$