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Abstract
Although public awareness of the need for security in computing systems is growing
rapidly, current efforts to provide security are unlikely to succeed. Current security efforts
suffer from the flawed assumption that adequate security can be provided in applications
with the existing security mechanisms of mainstream operating systems. In reality, the
need for secure operating systems is growing in today's computing environment due to
substantial increases in connectivity and data sharing. The goal of this paper is to
motivate a renewed interest in secure operating systems so that future security efforts
may build on a solid foundation. This paper identifies several secure operating system
features which are lacking in mainstream operating systems, argues that these features are
necessary to adequately protect general application-space security mechanisms, and
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provides concrete examples of how current security solutions are critically dependent on
these features.

Keywords: secure operating systems, mandatory security, trusted path, Java, Kerberos,
IPSEC, SSL, firewalls.
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Chapter 1

Introduction
Public awareness of the need for security in computing systems is growing as critical
services are becoming increasingly dependent on interconnected computing systems.
National infrastructure components such as the electric power, telecommunication and
transportation systems can no longer function without networks of computers.[_50_] The
advent of the World Wide Web has especially increased public concern for security.
Security is the primary concern of businesses which want to use the Internet for
commerce and maintaining business relationships.[_24_]

The increased awareness of the need for security has resulted in an increase of efforts
to add security to computing environments. However, these efforts suffer from the flawed
assumption that security can adequately be provided in application space without certain
security features in the operating system. In reality, operating system security
mechanisms play a critical role in supporting security at higher levels. This has been well
understood for at least twenty five years[_2_] ,[_54_] ,[_39_] , and continues to be
reaffirmed in the literature.[_1_] ,[_35_] Yet today, debate in the research community as
to what role operating systems should play in secure systems persists.[_11_] The
computer industry has not accepted the critical role of the operating system to security, as
evidenced by the inadequacies of the basic protection mechanisms provided by current
mainstream operating systems.

The necessity of operating system security to overall system security is undeniable; the
underlying operating system is responsible for protecting application-space mechanisms
against tampering, bypassing, and spoofing attacks. If it fails to meet this responsibility,
system-wide vulnerabilities will result.

The need for secure operating systems is especially crucial in today's computing
environment. Substantial increases in connectivity and data sharing have increased the
risk to systems such that even a careful and knowledgeable user running on a single-user
system is no longer safe from the threat of malicious code. Because the distinction
between data and code is vanishing, malicious code may be introduced, without a
conscious decision on the part of a user to install executable code, whenever data is
imported into the system. For example, malicious code could be introduced with a Java
applet or by viewing apparently benign data that, in actuality, contains executable
code.[_32_] ,[_62_] More so than ever, secure operating systems are needed to protect
against this threat.

The goal of this paper is to motivate a renewed interest in secure operating systems. By
consolidating a number of well-documented examples from the literature, it argues that
the threats posed by the modern computing environment cannot be addressed without
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support from secure operating systems and, as was stated in[_8_] , that any security effort
which ignores this fact can only result in a "fortress built upon sand." Section 2 describes
a set of secure operating system features which are typically lacking in mainstream
operating systems but are crucial to information security. The need for these features is
highlighted in section 3, which examines how application-space access control and
cryptography cannot provide meaningful security without a secure operating system.
Section 4 provides concrete examples of how security efforts rely on these operating
system security features. Section 5 discusses the role of operating system security with
respect to overall system security.
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Chapter 2

The Missing Link
This section identifies some features of secure operating systems which are necessary to
protect application-space security mechanisms yet are lacking in mainstream operating
systems. They form the "missing link" of security. Although this section only deals with
features, it is important to note that features alone are inadequate. Assurance evidence
must be provided to demonstrate that the features meet the desired system security
properties and to demonstrate that the features are implemented correctly. Assurance is
the ultimate missing link; although approaches to providing assurance may be
controversial, the importance of assurance is undeniable.

The list of features in this section is not intended to be exhaustive; instead it is merely
a small set of critical features that demonstrate the value of secure operating systems. A
more complete discussion on secure operating systems, including discussions of
assurance, can be found in[_25_] ,[_59_] or[_20_] Subsequent sections argue the
necessity of these features by describing how application-space security mechanisms and
current security efforts employing them are vulnerable in their absence.
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Chapter 2.1

Mandatory Security
The TCSEC[_20a_] provides a narrow definition of mandatory security which is tightly
coupled to the multi-level security policy of the Department of Defense. This has become
the commonly understood definition for mandatory security. However, this definition is
insufficient to meet the needs of either the Department of Defense or private industry as it
ignores critical properties such as intransitivity and dynamic separation of duty.[_12_]
,[_22_] This paper instead uses the more general notion of mandatory security defined
in[_59a_] , in which a mandatory security policy is considered to be any security policy
where the definition of the policy logic and the assignment of security attributes is tightly
controlled by a system security policy administrator. Mandatory security can implement
organization-wide security policies. Others have referred to this same concept as non-
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discretionary security in the context of role-based access control[_22a_] and type
enforcement.[_39a_] ,[_7_] ,[_13_] , (Actually, long ago, the term non-discretionary
controls was used for multi-level security as well.)[_39b_] Likewise, as defined
in[_59b_] , this paper uses a more general notion of discretionary security in which a
discretionary security policy is considered to be any security policy where ordinary users
may be involved in the definition of the policy functions and/or the assignment of
security attributes. Here discretionary security is not synonymous with identity based
access control; IBAC, like any other security policy, may be either mandatory or
discretionary.[_58_]

An operating system's mandatory security policy may be divided into several kinds of
policies, such as an access control policy, an authentication usage policy, and a
cryptographic usage policy. A mandatory access control policy specifies how subjects
may access objects under the control of the operating system. A mandatory authentication
usage policy specifies what authentication mechanisms must be used to authenticate a
principal to the system. A mandatory cryptographic usage policy specifies what
cryptographic mechanisms must be used to protect data. Additionally, various subsystems
of the operating system may have their own mechanism usage policies. These subsystem-
specific usage policies may be dependent on the cryptographic usage policy. For
example, a network usage policy for a router might specify that sensitive network traffic
should be protected using IPSEC ESP[_4_] in tunneling mode prior to being sent to an
external network. The selection of a cryptographic algorithm for IPSEC ESP may be
deferred to the cryptographic usage policy.

A secure system must provide a framework for defining the operating system's
mandatory security policy and translating it to a form interpretable by the underlying
mandatory security mechanisms of the operating system. Without such a framework,
there can be no real confidence that the mandatory security mechanisms will provide the
desired security properties.

An operating system which provides mandatory security may nonetheless suffer from
the presence of high bandwidth covert channels. This is an issue whenever the mandatory
security policy is concerned with confidentiality. This should not, however, be a reason to
ignore mandatory security. Even with covert channels, an operating system with basic
mandatory controls improves security by increasing the required sophistication of the
adversary. Once systems with basic mandatory controls become mainstream, covert
channel exploitation will become more common and public awareness of the need to
address covert channels in computing systems will increase.[_57_]

In any system which supports mandatory security, some applications require special
privileges in the mandatory policy in order to perform some security-relevant function.
Such applications are frequently called trusted applications because they are trusted to
correctly perform some security-related function and because they are trusted to not
misuse privileges required in order to perform that function. If the mandatory security
mechanisms of a secure operating system only support coarse-grained privileges, then the
security of the overall system may devolve to the security of the trusted applications on
the system. To reduce the dependency on trusted applications, the mandatory security
mechanisms of an operating system should be designed to support the principle of least
privilege. Type enforcement is an example of a mandatory security mechanism which
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may be used both to limit trusted applications to the minimal set of privileges required for
their function and to confine the damage caused by any misuse of these privileges.[_48_]
,[_28_]

The mandatory security mechanisms of an operating system may be used to support
security-related functionality in applications by rigorously ensuring that subsystems are
unbypassable and tamperproof. For example, type enforcement may be used to
implement assured pipelines to provide these properties. An assured pipeline ensures that
data flowing from a designated source to a designated destination must pass through a
security-related subsystem and ensures the integrity of the subsystem. Many of the
security requirements of these applications may be ensured by the underlying mandatory
security mechanisms of the operating system.[_48a_]

Operating system mandatory security mechanisms may also be used to rigorously
confine an application to a unique security domain that is strongly separated from other
domains in the system. Applications may still misbehave, but the resulting damage can
now be restricted to within a single security domain. This confinement property is critical
to controlling data flows in support of a system security policy.[_33_] In addition to
supporting the safe execution of untrustworthy software, confinement may support
functional requirements, such as an isolated testing environment or an insulated
development environment.[_48b_] For example both the Sidewinder firewall and the
DTE firewall use type enforcement for confinement.[_6_] ,[_12a_]

Although one could attempt to enforce a mandatory security policy through
discretionary security mechanisms, such mechanisms can not defend against careless or
malicious users. Since discretionary security mechanisms place the burden for security on
the individual users, carelessness by any one user at any point in time may lead to a
violation of the mandatory policy. In contrast, mandatory security mechanisms limit the
burden to the system security policy administrator. With only discretionary mechanisms,
a malicious user with access to sensitive data and applications may directly release
sensitive information in violation of the mandatory policy. Although that same user may
also be able to leak sensitive information in ways that do not involve the computing
system, the ability to leak the information through the computing system may increase
the bandwidth of the leak and may decrease its traceability. In contrast, with mandatory
security mechanisms, he may only leak sensitive information through covert channels,
which limits the bandwidth and increases accountability, if covert channels are audited.

Furthermore, even with users who are benign and careful, the mandatory security
policy may still be subverted by flawed or malicious applications when only discretionary
mechanisms are used to enforce it. (A discussion of the formal limitations of
discretionary security mechanisms appears in[_29_] .) The distinction between flawed
and malicious software is not particularly important in this paper. In either case, an
application may fail to apply security mechanisms required by the mandatory policy or
may use security mechanisms in a way that is inconsistent with the user's intent.
Mandatory security mechanisms may be used to ensure that security mechanisms are
applied as required and can protect the user against inadvertent execution of
untrustworthy applications. Although the user may have carefully defined the
discretionary policy to properly implement the mandatory policy, an application may
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change the discretionary policy without the user's approval or knowledge. In contrast, the
mandatory policy may only be changed by the system security policy administrator.

In the case of personal computing systems, where the user may be the system security
policy administrator, mandatory security mechanisms are still helpful in protecting
against flawed or malicious software. In the simplest case, where there is only a
distinction between the user's ordinary role and the user's role as system security policy
administrator, the mandatory security mechanisms can protect the user against
unintentional execution of untrustworthy software. With a further subdivision of the
user's ordinary role into various roles based on function, mandatory security mechanisms
can confine the damage that may be caused by flawed or malicious software.

Although there are a number of commercial operating systems with support for
mandatory security, none of these systems have become mainstream. These systems have
suffered from a fixed notion of mandatory security, thereby limiting their market appeal.
Furthermore, these systems typically lack adequate support for constraining trusted
applications. In order to reach a wider market, operating systems must support a more
general notion of mandatory security and must support flexible configuration of
mandatory policies.

Mainstream commercial operating systems rarely support the principle of least
privilege even in their discretionary access control architecture. Many operating systems
only provide a distinction between a completely privileged security domain and a
completely unprivileged security domain. Even in Microsoft Windows NT, the privilege
mechanism fails to adequately protect against malicious programs because it does not
limit the privileges that a program inherits from the invoking process based on the
trustworthiness of the program.[_65_]

Current microkernel-based research operating systems have tended to focus on
providing primitive protection mechanisms which may be used to flexibly construct a
higher-level security architecture. Many of these systems, such as the Fluke
microkernel[_23_] and the Exokernel[_41_] , use kernel-managed capabilities as the
underlying protection mechanism. However, as discussed in[_59c_] , typical capability
architectures are inadequate for supporting mandatory access controls with a high degree
of flexibility and assurance. L4[_38_] provides some support for mandatory controls
through its clans and chiefs mechanism and its IPC mechanism for identifying senders
and receivers but still lacks a coherent framework for using these mechanisms to meet the
requirements of a mandatory policy. Furthermore, L4 assumes that there will only be a
small number of distinct security domains.[_38a_] Flask[_56_] , a variant of the Fluke
microkernel, provides a mandatory security framework similar to that of DTOS[_43_] , a
variant of the Mach microkernel; both systems provide mechanisms for mandatory access
control and a mandatory policy framework.
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Chapter 2.2

Trusted Path
A trusted path is a mechanism by which a user may directly interact with trusted
software, which can only be activated by either the user or the trusted software and may
not be imitated by other software.[_20b_] In the absence of a trusted path mechanism,
malicious software may impersonate trusted software to the user or may impersonate the
user to trusted software. Such malicious software could potentially obtain sensitive
information, perform functions on behalf of the user in violation of the user's intent, or
trick the user into believing that a function has been invoked without actually invoking it.
In addition to supporting trusted software in the base system, the trusted path mechanism
should be extensible to support the subsequent addition of trusted applications by a
system security policy administrator.[_28a_]

The concept of a trusted path can be generalized to include interactions beyond just
those between trusted software and users. The TNI introduces the concept of a trusted
channel for communication between trusted software on different network
components.[_44_] More generally, a mechanism that guarantees a mutually
authenticated channel, or protected path, is necessary to ensure that critical system
functions are not being spoofed. Although a protected path mechanism for local
communications could be constructed in application space without direct authentication
support in the operating system, it is preferable for an operating system to provide its own
protected path mechanism since such a mechanism will be simpler to assure[_59d_] and
is likely to be more efficient.

Most mainstream commercial operating systems are utterly lacking in their support for
either a trusted path mechanism or a protected path mechanism. Microsoft Windows NT
does provide a trusted path for a small set of functions such as login authentication and
password changing but lacks support for extending the trusted path mechanism to other
trusted applications.[_65a_] For local communications, NT does provide servers with the
identity of their clients; however, it does not provide the server identity to the client.
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Chapter 3

General Examples
This section argues that without operating system support for mandatory security and
trusted path, application-space mechanisms for access control and cryptography cannot
be implemented securely. These arguments will then be used to reinforce the discussion
in section 4, which analyzes concrete examples.
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Chapter 3.1

Access Control
An application-space access control mechanism may be decomposed into an enforcer
component and a decider component. When a subject attempts to access an object
protected by the mechanism, the enforcer component must invoke the decider
component, supplying it with the proper input parameters for the policy decision, and
must enforce the returned decision. A common example of the required input parameters
is the security attributes of the subject and the object. The decider component may also
consult other external sources in order to make the policy decision. For example, it may
use an external policy database and system information such as the current time.

If a malicious agent can tamper with any of the components in the access control
mechanism or with any inputs to the decision, then the malicious agent can subvert the
access control mechanism. Even if the components and all of the inputs are collocated
within a single file, the operating system security mechanisms are still relied upon to
protect the integrity of that file. As discussed in the prior section, only mandatory security
mechanisms can rigorously provide such integrity guarantees.

Even with strong integrity guarantees for the policy decision inputs, if an authorized
user invokes malicious software, the malicious software could change an object's security
attributes or the policy database's rules without the user's knowledge or consent. The
access control mechanism requires a trusted path mechanism in the operating system in
order to ensure that arbitrary propagation of access cannot occur without explicit
authorization by a user.

If a malicious agent can impersonate the decider component to the enforcer
component, or if a malicious agent can impersonate any source of inputs to the decision,
then the malicious agent can subvert the mechanism. If any of the components or external
decision input sources are not collocated within a single application, then the access
control mechanism requires a protected path mechanism.

If a malicious agent can bypass the enforcer component, then it may trivially subvert
the access control mechanism. Mandatory security mechanisms in the operating system
may be used to ensure that all accesses to the protected objects are mediated by the
enforcer component.
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Chapter 3.2

Cryptography
An analysis of application-space cryptography may be decomposed into an analysis of
the invocation of the cryptographic mechanism and an analysis of the cryptographic
mechanism itself. The analysis of this section draws from the discussions in[_51_]
,[_15_] ,[_60_] ,[_61_] ,[_55_] , and[_52_] .
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As an initial basis for discussion, suppose that the cryptographic mechanism is a
hardware token that implements the necessary cryptographic functions correctly and that
there is a secure means by which the cryptographic keys are established in the token.
Even in this simplified case, where the confidentiality and integrity of algorithms and
keys is achieved without operating system support, this section will demonstrate that
there are still vulnerabilities which may only be effectively addressed with the features of
a secure operating system.

One vulnerability in this simplified case is that invocation of the token cannot be
guaranteed. Any legitimate attempt to use the token might not result in a call to the token.
The application that performs the cryptographic invocation might be bypassed or
modified by malicious applications or malicious users. Malicious applications might
impersonate the cryptographic token to the invoking application.

Mandatory security and protected path features in the operating system address this
vulnerability. Mandatory security mechanisms may be used to ensure that the application
that invokes the cryptographic token is unbypassable and tamperproof against both
malicious software and malicious users. Unbypassability could also be achieved by using
an inline cryptographic token, which is physically interposed between the sender of the
data to be protected and the receiver of the protected data; however, this would be less
flexible. A protected path mechanism may be used to ensure that malicious software
cannot impersonate the cryptographic token to the invoking application.

Misuse of the cryptographic token is a second vulnerability in the simplified case.
Misuse may involve the use of a service, algorithm, session or key by an unauthorized
application. Without operating system support for identifying callers, a cryptographic
token can do little more than require that a user activate it, after which, any service,
algorithm, session or key authorized for that user may be used by any application on the
system. In this case, the cryptographic token may be misused by applications operating
on behalf of other users or may be misused by malicious software operating on behalf of
the authorized user. Furthermore, unless the cryptographic token has a direct physical
interface for user activation, malicious software can spoof the token to the user, obtain
authentication information, and subsequently activate the cryptographic token without the
user's knowledge or consent. Even with a direct physical interface to the user, it is
impractical for the cryptographic token to require user confirmation for every
cryptographic operation.

This second vulnerability may be addressed through mandatory security, trusted path
and protected path features in the operating system. A trusted path mechanism obviates
the need for a separate physical interface for activation. A protected path mechanism
permits the cryptographic token to identify its callers and enforce fine-grained controls
over the use of services, algorithms, sessions and keys. As an alternative to having the
token deal with fine-grained controls over its usage, mandatory security mechanisms may
also be used to provide such controls. For example, mandatory security mechanisms may
be used to isolate the token for use only by applications executed by the user who
activated the token. Furthermore, the mandatory security mechanisms can reduce the risk
of malicious software being able to use the cryptographic token and may consequently
limit the use of the trusted path mechanism to highly sensitive actions.
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Hence, even in the simplest case, the features of a secure operating system are crucial
to addressing the vulnerabilities of application-space cryptography. In the remainder of
this section, the assumptions of the simplified case are removed, and the additional
vulnerabilities are examined.

If the assumption that initial keys are securely established within the token is removed,
then there is the additional vulnerability that the initial keys may be observed or modified
by an unauthorized entity. Unless the initial keys are provided via a dedicated physical
interface to the cryptographic token, the operating system must protect the path between
the initial key source and the cryptographic token and may need to protect the initial key
source itself. Mandatory security mechanisms may be used to rigorously protect the path
and the key source. A trusted path may be required for initial keying.

If the assumption that the cryptographic mechanism is confined to a single hardware
token is removed and implemented in software instead, the confidentiality and integrity
of the cryptographic mechanism's code and data becomes dependent on the operating
system, including both memory protection and file protection. Mandatory security is
needed to rigorously ensure the mechanism's integrity and confidentiality. If any external
inputs, such as input parameters to a random number generator, are used by the
cryptographic mechanism, the input sources and the path between the input sources and
the cryptographic mechanism must be protected with mandatory security mechanisms.
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Chapter 4

Concrete Examples
This section further demonstrates that secure operating systems are necessary by showing
that some widely accepted security solutions critically rely on the features of secure
operating systems. In particular, this section examines mobile code security efforts, the
Kerberos network authentication system, firewalls and network security protocols.
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Chapter 4.1

Mobile Code
A number of independently-developed security solutions for the World Wide Web, each
with its own protection model, have been developed to protect against the threats from
malicious mobile code. However, systems relying on these security solutions are
vulnerable because of a lack of operating system support for security. Primarily, this
section will emphasize this point by focusing on efforts to secure Java[_27_] , but other
efforts will also be used to highlight issues.

The primary threat that these solutions attempt to address is the threat of hostile mobile
code gaining unauthorized access to a user's files and resources in order to compromise
confidentiality or integrity. The threat is not limited to interpreted applets loaded from the
network by a web browser; both[_26_] and[_30_] extend this threat model to include
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helper applications which may have been actively installed by a user. There is little
distinction between mobile code and what is traditionally considered data. For example,
consider that Postscript documents are actually programs with potential access to the
local filesystem. Consequently, helper applications which operate on untrustworthy data,
such as Postscript viewers, must either be executed in a less flexible mode of operation,
or must be carefully confined by the operating system.

The basic Java Security Model is based on the notion of "sandboxing." The system
relies on the type-safety of the language in conjunction with the Java Security Manager to
prevent unauthorized actions.[_27a_] Efforts are currently underway to add additional
security features to Java, such as capabilities, an expanded access control model, or
additional controls over access to certain class libraries.[_70_]

The fundamental limitation of these approaches is that none can be guaranteed to be
tamperproof or unbypassable. For example, although the Java language is claimed to be
secure, the Java Virtual Machine (JVM) will accept byte code which violates the
language semantics and which can lead to security violations.[_32a_] JVM
implementation errors have led to violations of the language's semantics.[_19_] A
significant portion of the Java system is currently in the form of native methods which
are implemented as object code and are not subject to the JVM's type-safety checks. The
JVM is not able to protect itself from tampering by other applications. Finally, the Java
security model can offer no protection from the many other forms of malicious mobile
code. In[_30a_] , the authors call for trusted systems to support a system-wide solution to
address the threats presented by non-Java code.

Even if such problems with the JVM did not exist, these security solutions would still
suffer from the fundamental limitation that they rely on application-space access control
for security. They all depend on the local file system to preserve the integrity of the
system code, including class files. All of the systems which store policy locally depend
on file system access control to preserve the integrity of the policy files. Section 3.1
demonstrated the importance of secure operating system features for supporting
application-space access control.

Another popular approach to "securing" mobile code is to require digitally signed
applets and limit execution to those originating from trusted sources.[_27b_] In fact,
native ActiveX security is based entirely on digital signatures, as it has no form of access
control.[_24a_] ,[_27c_] The basic flaw with this approach is that it is an all-or-nothing
proposition; the user cannot constrain a native ActiveX control to a limited security
domain. Mandatory security mechanisms in the operating system may be used for this
purpose, by confining the browser to a distinct security domain.

Note that, although not sufficient by themselves, digital signatures will play an
important part in mobile code security, even on secure operating systems. They can
reduce the risk of malicious code entering the system, provide some measure of trust that
an applet will behave properly, and provide another piece of information to use in making
an access control decision. However, as with the general application-space cryptography
described in section 3.2, the digital signature verification mechanism depends on secure
operating system features to guarantee invocation, to protect the integrity of the
mechanism, and to protect the integrity of the locally cached public keys.
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The need for an operating system trusted path mechanism was highlighted by[_67_]
which demonstrates the ease with which a trojan horse applet can capture credit card
numbers, PIN numbers or passwords by perfectly emulating a window system dialog box.
The proposed solution was an ad hoc user-level trusted path mechanism which required a
user to customize his dialog box with a complicated graphical pattern. This solution is not
adequate as it only increases the sophistication required in the trojan horse.

Other systems attempt to provide alternative security solutions to the mobile code
threat. The Janus system[_26a_] interposes on Solaris system calls to constrain untrusted
native applications, and Safe-Tcl[_49_] provides a "safe interpreter" which attempts to
limit the command set available to untrusted code. However, like the Java security
solutions, these systems are subject to the same vulnerabilities as any other application-
space access control mechanism; consequently, they require secure operating system
support.

Beyond enabling all of the mobile code systems mentioned above to function securely,
a secure system could also simplify them. Rather than implementing their security
primitives in application space where they are vulnerable, they could utilize the system
security services to provide a better overall system. A properly designed secure system
would provide a flexible, economic foundation with one consistent security model for all
of the different virtual machine efforts to use.
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Chapter 4.2

Kerberos
Kerberos[_31_] ,[_47_] is a network authentication service originally developed for
Project Athena at MIT. In addition to providing an authentication service, Kerberos
supports the establishment of session keys to support network confidentiality and
integrity services. Derivatives of Kerberos have been used to provide authentication and
key establishment services for AFS[_64_] , DCE[_53_] , and ONC RPC.[_21_] Kerberos
and systems that rely on Kerberos have been suggested as a means of providing security
for the World Wide Web.[_18_] ,[_36_] ,[_37_]

Kerberos is based on symmetric cryptography with a trusted key distribution center
(KDC) for each realm. The Kerberos KDC has access to the secret key of every principal
in its realm. Consequently, a compromise of the KDC can be catastrophic. This is
generally addressed by requiring that the KDC be both physically secure and dedicated
solely to running the Kerberos authentication server.[_46_] (Variants of Kerberos have
been proposed that use asymmetric cryptography either to reduce the cost incurred by a
penetration of the KDC or to completely eliminate the need for the KDC[_63_] ,[_66_]
,[_42_] , and[_18a_] .) A typical environment also uses physically-secure dedicated
systems for the servers using Kerberos. Without these environmental assumptions, the
Kerberos authentication service and the Kerberized server applications would require
secure operating system features to rigorously ensure that they are tamperproof and
unbypassable. For the sake of argument, the remainder of this section will consider these
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environmental assumptions to be true and focus only on the security of the client
workstations.

Kerberos was designed for an environment where the client workstations and the
network are assumed to be completely untrustworthy.[_10_] ,[_45_] However, since the
software on the client workstation mediates all interactions between its user and the
Kerberized server applications, this assumption implies that the Kerberized server
applications must view all client applications as potentially malicious software.
Furthermore, a Kerberized server application has no means of establishing a trusted path
to a user on a client workstation, since that would require trusted code on the client
workstation. Thus, in a system that uses Kerberos, malicious software executed by a user
is free to arbitrarily modify or leak a user's information, with no means of confinement;
no distinctions between a user's legitimate requests and the requests of malicious
software are possible. Given the increasing ease with which malicious software may be
introduced into a system, the Kerberos environmental model seems untenable. As noted
in,[_14_] secure end-to-end transactions require trusted code at both end points.

As a basis of further discussion, suppose that there is a base set of trustworthy software
on the client workstations which is protected against tampering, but that the client
workstation operating system still lacks mechanisms for mandatory security and trusted
path. Furthermore, suppose that the client workstation is a single-user system which does
not export any services to other systems. In spite of these assumptions, a user is still
vulnerable to attacks by malicious software, such as mobile code downloaded by the user.

If the malicious software could spoof the client-side authentication program to the user,
then it may be able to obtain a user's password. Even with one-time passwords, this attack
would permit the malicious software to act on behalf of the user during the login session.
A trusted path mechanism in the client workstation's operating system can be used to
prevent such an attack. Additionally, such a trusted path mechanism in combination with
support for a network protected path can be used to provide a trusted path between users
and server applications.

If the malicious software can read the files used by the Kerberos client software to
store tickets and session keys, then the malicious software may directly impersonate the
user to the corresponding Kerberized server applications. Even if the session keys are
encapsulated within a hardware cryptographic token, the malicious software can invoke
the cryptographic token on behalf of the user, exploiting the misuse vulnerability
discussed in section 3.2. Mandatory security mechanisms can be used to rigorously
protect either the file or the cryptographic token against access by malicious software.

<- -c- ->

Chapter 4.3

Network Security Protocols
The IPSEC network security protocols[_5_] ,[_3_] ,[_4a_] are used to provide
authentication, integrity, and confidentiality services at the IP layer. Typical
implementations of the IPSEC protocols rely on application-space key management
servers to perform key exchanges and supply keys for security associations. The IPSEC
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module in the network stack communicates with the local key management server via
upcalls to retrieve the necessary information.

SSL[_69_] is another network security protocol that provides authentication, integrity,
and confidentiality services and a negotiation service for keys and cryptographic
algorithms. SSL, however, is implemented entirely in application space and requires no
kernel modifications. SSL has been implemented as a library that interposes on socket
calls to incorporate the SSL protocol between the underlying transport protocol of the
socket (e.g., TCP) and the application protocol (e.g., HTTP).

Since it relies on application-space cryptography, the key management server used by
IPSEC is subject to the vulnerabilities described in section 3.2 and requires mandatory
security mechanisms in the operating system for adequate protection. In turn, since the
protection provided by IPSEC depends on the protection of the keys, mandatory security
mechanisms in the operating system are also crucial to meeting the security requirements
of IPSEC. Since the complete SSL implementation operates in application space, it is
directly subject to the vulnerabilities described in section 3.2 and requires mandatory
security mechanisms in the operating system for adequate protection.

Both IPSEC and SSL are intended to provide secure channels. However, as noted
in[_14a_] , an end-to-end secure transaction requires a secure channel and secure end
points. If an attacker can penetrate one of the end points and directly access the
unprotected data, then the protection provided by IPSEC and SSL is only illusory.

<- -c- ->

Chapter 4.4

Firewalls
A network firewall is a mechanism for enforcing a trust boundary between two networks.
The analysis of this section is based on the discussions in[_17_] ,[_9_] ,[_11a_] ,[_6a_]
Commonly, firewalls are used to maintain a separation between insiders and outsiders for
an organization's computing resources. Internal firewalls may also be used to provide
separation between different groups of insiders or to provide defense-in-depth against
outsiders.

Modern firewall architectures typically involve the use of bastion hosts; in a screened
subnet architecture, there may be an external bastion host on a perimeter network, which
is highly exposed to outsiders, and an internal bastion host on the internal network, which
is exposed to the external bastion host. The security of the bastion hosts is crucial to the
security provided by the firewall. To reduce risk, bastion hosts are typically dedicated
systems, only providing the minimal services required. Even with such minimal
configuration, flaws in the proxy servers on the bastion host may permit penetration.
However, mandatory security mechanisms in the operating systems of the bastion hosts
may be used to confine proxy servers so that penetrations are narrowly limited. Similarly,
the bastion host's mandatory security mechanisms may be used to protect proxy servers
against tampering.

Firewalls provide no protection against malicious insiders. Typically, insiders can
easily leak information through the firewall. Malicious insiders can construct tunnels to
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permit outsiders to perform inbound calls through the firewall or may provide ways of
bypassing a firewall entirely. Additionally, malicious insiders can exploit data leaked
between users within the firewall. Although internal firewalls may be used to partition
insiders into multiple trust classes, the granularity of protection is quite limited in
comparison to what can be provided by a secure operating system.

The ability of malicious insiders to leak data through the firewall can be confined by
mandatory security mechanisms in the operating systems of the internal hosts. Likewise,
mandatory security mechanisms in the operating systems of the internal hosts can confine
outsiders who perform inbound calls through tunnels constructed by a malicious insider
to the security domains in which the malicious insider is allowed to operate.

In addition to the threat of malicious insiders, a firewall is at risk from the threat of
malicious software executed by benign insiders. Typically, firewalls do not require that
insiders strongly authenticate themselves to the firewall in order to access external
services through the firewall.[_40_] Hence, if a benign insider executes malicious
software on an internal host, the malicious software may seek to subvert the protection of
the firewall in the same fashion as a malicious insider. An example of using a malicious
Java applet to enable outsiders to penetrate a firewall is given in[_40a_] Even if insiders
are required to strongly authenticate themselves to the firewall, a benign insider may still
execute a trojan horse whose overt purpose requires external access; in this case, the
malicious software may still subvert the protection of the firewall.

Mandatory security mechanisms in the operating systems of the internal hosts may be
used to protect users against execution of malicious software or to confine such software
when it is executed. If strong authentication is required prior to accessing external
services, mandatory security mechanisms could be used to ensure that only trustworthy
software on the internal hosts can communicate with the strong authentication
mechanism on the firewall. In any case, the mandatory security mechanisms would limit
the ability of malicious software to leak information or support inbound calls.

Firewalls are also susceptible to malicious data attacks.[_62a_] Some example
malicious data attacks relevant to firewalls are described in[_68_] ,[_40b_] ,[_16_] As
with malicious insiders and malicious software, mandatory security mechanisms in the
operating systems of the bastion hosts and the internal hosts may be used to confine
malicious data attacks.

When inbound services are supported by a firewall, the firewall itself cannot protect
the remote system against compromise. The remote system's operating system must
protect against misuse of the allowed inbound services and must protect any information
acquired through the inbound service against leakage. Mandatory security mechanisms in
the remote system's operating system may be used to provide such protection.
Additionally, mandatory security mechanisms in the internal host's operating system are
needed to confine any attack from a penetrated remote system.

When a benign insider wishes secure access to a remote service, the firewall itself
cannot provide complete protection for the use of the remote service. The internal host's
operating system must protect against any attempts by the server to trick the client into
misusing its privileges, as in the case where a browser executes a malicious applet
provided by a server; mandatory security mechanisms in the internal host's operating
system may be used to confine these client applications.
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<- -c- ->

Chapter 5

System Security
No single technical security solution can provide total system security; a proper balance
of security mechanisms must be achieved. Each security mechanism provides specific
security functions and should be designed to only provide those functions. It should rely
on other mechanisms for support and for required security services. In a secure system,
the entire set of mechanisms complement each other so that they collectively provide a
complete security package. Systems that fail to achieve this balance will be vulnerable.

As has been shown throughout this paper, a secure operating system is an important
and necessary piece to the total system security puzzle, but it is not the only piece. A
highly secure operating system would be insufficient without application-specific security
built upon it. Certain problems are actually better addressed by security implemented
above the operating system. One such example is an electronic commerce system that
requires a digital signature on each transaction. A application-space cryptographic
mechanism in the transaction system protected by secure operating system features might
offer the best system security solution.

No single security mechanism is likely to provide complete protection. Unsolved
technical problems, implementation errors and flawed environmental assumptions will
result in residual vulnerabilities. As an example, covert channels remain a serious
technical challenge for secure operating system designers. These limitations must be
understood, and suitable measures must be taken to deploy complementary mechanisms
designed to compensate for such problems. In the covert channel example, auditing and
detection mechanisms should be utilized to minimize the chances that known channels
are exploited. In turn, these should depend on secure operating systems to protect their
critical components, such as audit logs and intrusion sensors, because they are subject to
the same types of vulnerabilities as those discussed throughout this paper.

<- -c- ->

Chapter 6

Summary
This paper has argued that the threats posed by the modern computing environment
cannot be addressed without secure operating systems. The critical operating system
security features of mandatory security and trusted path have been explained and
contrasted with the inadequate protection mechanisms of mainstream operating systems.
This paper has identified the vulnerabilities that arise in application-space mechanisms
for access control and cryptography and has demonstrated how mandatory security and
trusted path mechanisms address these vulnerabilities. To provide a clear sense of the
need for these operating system features, this paper has analyzed concrete examples of
current approaches to security and has shown that the security provided by these
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approaches is inadequate in the absence of such features. Finally, the reader was given a
perspective of system security where both secure operating systems and application-space
security mechanisms must complement each other in order to provide the correct level of
protection.

By arguing that secure operating systems are indispensable to system security, the
authors hope to spawn a renewed interest in operating system security. If security
practitioners were to more openly acknowledge their security solution's operating system
dependencies and state these dependencies as requirements for future operating systems,
then the increased demand for secure operating systems would lead to new research and
development in the area and ultimately to commercially viable secure systems. In turn,
the availability of secure operating systems would enable security practitioners to
concentrate on security services that belong in their particular components rather than
dooming them to try to address the total security problem with no hope of success.

<- -c- ->
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